pairwise identification - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

pairwise identification - traduzione in russo

PROPERTY OF A SET OF RANDOM VARIABLES ASSERTING INDEPENDENCE FOR ANY PAIR OF VARIABLES.
Pairwise independent

pairwise identification      

математика

попарное отождествление

pairwise         
WIKIMEDIA DISAMBIGUATION PAGE
Pairwise (disambiguation)

['peəwaiz]

общая лексика

попарно

по двое

прилагательное

['peəwaiz]

общая лексика

парный

попарный

наречие

общая лексика

парами

попарно

employer identification number         
NUMBER ASSIGNED BY THE UNITED STATES INTERNAL REVENUE SERVICE TO ALL EMPLOYERS
Employer Identification number; FTIN; Federal Tax Identification number; Federal Tax identification number; Federal tax identification number; FEIN; Federal tax id; Employer identification number; Federal Employer Identification Number; EIN (identifier)
1) амер. регистрационный номер фирмы, выплачивающей налог в фонд социального страхования
2) кодовый номер нанимателя

Definizione

EDID
Extended Display Identification Data [Additional explanations: standard] (Reference: VESA, DDC)

Wikipedia

Pairwise independence

In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated.

A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) F X , Y ( x , y ) {\displaystyle F_{X,Y}(x,y)} satisfies

F X , Y ( x , y ) = F X ( x ) F Y ( y ) , {\displaystyle F_{X,Y}(x,y)=F_{X}(x)F_{Y}(y),}

or equivalently, their joint density f X , Y ( x , y ) {\displaystyle f_{X,Y}(x,y)} satisfies

f X , Y ( x , y ) = f X ( x ) f Y ( y ) . {\displaystyle f_{X,Y}(x,y)=f_{X}(x)f_{Y}(y).}

That is, the joint distribution is equal to the product of the marginal distributions.

Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " X, Y, Z are independent random variables" means that X, Y, Z are mutually independent.

Traduzione di &#39pairwise identification&#39 in Russo